
Impact of Data Placement on Resilience in
Large-Scale Object Storage Systems

Philip Carns, Kevin Harms, John Jenkins, Misbah Mubarak, Robert Ross
Argonne National Laboratory

Lemont, IL 60439
carns@mcs.anl.gov

Christopher Carothers
Rensselaer Polytechnic Institute

Troy, NY 12180

Abstract—Distributed object storage architectures have be-
come the de facto standard for high-performance storage in big
data, cloud, and HPC computing. Object storage deployments
using commodity hardware to reduce costs often employ object
replication as a method to achieve data resilience. Repairing
object replicas after failure is a daunting task for systems with
thousands of servers and billions of objects, however, and it is
increasingly difficult to evaluate such scenarios at scale on real-
world systems. Resilience and availability are both compromised
if objects are not repaired in a timely manner.

In this work we leverage a high-fidelity discrete-event simula-
tion model to investigate replica reconstruction on large-scale
object storage systems with thousands of servers, billions of
objects, and petabytes of data. We evaluate the behavior of
CRUSH, a well-known object placement algorithm, and identify
configuration scenarios in which aggregate rebuild performance
is constrained by object placement policies. After determining the
root cause of this bottleneck, we then propose enhancements to
CRUSH and the usage policies atop it to enable scalable replica
reconstruction. We use these methods to demonstrate a simulated
aggregate rebuild rate of 410 GiB/s (within 5% of projected ideal
linear scaling) on a 1,024-node commodity storage system. We
also uncover an unexpected phenomenon in rebuild performance
based on the characteristics of the data stored on the system.

I. INTRODUCTION

Distributed object storage architectures are widely adopted
in large-scale storage systems for a variety of problem do-
mains [1], [2], [3], [4], [5], [6], [7]. Object storage deploy-
ments that use commodity hardware to reduce costs often
employ object replication as a method to achieve data re-
silience. These systems must therefore use distributed rebuild
algorithms to regain resilience by replacing lost replicas after a
failure event. Distributed rebuild is a daunting task for systems
with thousands of servers and billions of objects because of
the quantity of data and the degree of interserver coordination
involved. This leads to an essential question for large-scale
storage systems: how efficiently does the system recover from
faults? The performance of this procedure (i.e., the aggregate
rebuild rate) has a direct impact on the mean time to data
loss (MTTDL), particularly for replication levels greater than
two [8], [9]: the longer it takes to replace missing replicas,
the higher the probability that subsequent failures will result
in data loss. Perceived application response time may also be
compromised while the system is in a degraded state.

The object placement algorithm, that is, the mechanism
used to map object replicas to available servers, is a critical

element of storage system design that affects performance,
locality, and load balancing. The object placement algorithm
also dictates replica declustering and thus the total amount of
parallelism that can be achieved during rebuild. Declustering
was originally proposed in the context of disk arrays as a
means to distribute RAID stripe units across different subset
of disks for better load distribution during rebuild [10]. In the
context of replicated object storage systems, declustering is
the degree to which surviving servers are engaged in replica
reconstruction following a failure [11], [12]. Fully declustered
algorithms lead to a rebuild in which all servers participate
evenly, while fully clustered algorithms localize the rebuild
load to the smallest possible number of affected servers.
Most placement algorithms fall somewhere between these two
extremes in practice. We focus our analysis on algorithmic
placement, in which storage locations are calculated by ap-
plying a deterministic function to the object ID and candidate
server IDs. Algorithmic placement is a popular choice in
distributed system design because it eliminates the need to
store explicit layout metadata for each object and it allows any
client or server to independently (but consistently) calculate
placement.

Declustering, object placement, and aggregate rebuild per-
formance are clearly critical elements of storage system de-
sign. However, the cost and complexity of distributed ob-
ject storage systems make it difficult to perform thorough
experimental assessment of these components at scale. As
a result, the nuances of large-scale fault recovery are not
well understood; for example, what are the weakest links in
performance and how will rebuild be impacted by the nature
of the data stored on the system? Worse yet, distributed stor-
age protocols may contain subtle performance or correctness
flaws [13] that are difficult to discover intuitively. We address
this gap by developing a high-fidelity distributed object storage
simulator to investigate the behavior of storage systems with
thousands of servers, billions of objects, and petabytes of
storage capacity.

Our analysis uncovers subtle limitations in a well-known
object placement method at scale and identifies methods that
future storage systems can adopt to remedy the problem. We
find that an efficient object placement algorithm can enable
near-linear scaling of aggregate rebuild performance; our ex-
ample model achieves over 400 GiB/s of aggregate throughput

using 1,024 commodity storage servers. The contributions of
this work include the following:

• A case study evaluating the rebuild efficiency of an
object storage system using an existing well-known object
placement method

• Identification and evaluation of object-placement opti-
mizations that can improve rebuild efficiency at scale

• A high-fidelity object storage system simulator that can
model a system with thousands of servers, billions of
objects, and petabytes of storage capacity

• An analysis of large-scale data populations, a method
for modeling their characteristics, and a demonstration
of their impact on experimental results

The remainder of the text is organized as follows. Section II
provides background information, and Section III describes
our simulation platform. Section IV explores a large-scale
object rebuild case study. Section V evaluates potential per-
formance optimizations, the impact of data populations, and
the effectiveness of the simulation methodology. Section VI
highlights related work, and Section VII summarizes our
findings.

II. BACKGROUND

Our target use case is a horizontally scalable data-center
storage system, consisting of hundreds or thousands of servers,
built from commodity components, and capable of hosting
many petabytes of replicated data for high-performance dis-
tributed and parallel applications. The servers are homoge-
neous, and configuration is controlled by a system admin-
istrator. We expect server failures to be frequent but not
continuous [14]. It follows that group membership will be
relatively static as well.

Various failure modes are possible in production, but for
clarity in this work we focus on the scenario in which a single
server fails completely such that its data is no longer reachable.
This is a straightforward starting point for understanding
baseline rebuild behavior. More complex failure modes can
be studied in future work.

A. Object placement

An object placement algorithm is the mechanism used to
map a given object and its replicas to a subset of servers
in a distributed storage system. Many large storage systems
elect to use a deterministic mathematical function for this
purpose in order to simplify the design and avoid storing
explicit layout metadata for each object [1], [15], [16], [6]. The
most popular class of deterministic algorithms is consistent
hashes [17]. Consistent hashes map object identifiers to the
“K closest” server identifiers based on a numerical distance
metric. The calculation is stable in that if a server fails, it will
affect the mapping of only object replicas that were owned
by that server. All surviving replicas remain in their previous
locations. This minimizes the amount of data that must be
transferred following a failure.

Figure 1 shows an example of a one-dimensional ring
consistent hashing method. For simplicity in this example we

Svr A: 12

Svr B: 27

Svr C: 60

Svr D: 75

Svr E: 87

100 0

OID 33 and its replicas
will be mapped to the
3 "closest" clockwise
servers: 60,75,87.

Fig. 1. Object placement example: a one-dimensional consistent hashing ring.

limit the object ID and server ID space to the values from 0
to 100. Servers are assigned numerical identifiers that can be
visualized as positions on a ring. In this case the server IDs are
randomized: 12, 27, 60, 75, and 87, although some systems
may explicitly assign IDs in order to more evenly distribute
them in the ID space. Each object is mapped to the K closest
server IDs clockwise from the object ID’s position on the ring.
Note that the “distance” on this ring is a virtual construct that
has no relation to physical locality. In this example object 33
is 3-way replicated across servers 60, 75, and 87. If server 75
were to fail, then the two surviving replicas would remain in
place, and server 12 (the next closest continuing in a clockwise
direction) would be responsible for generating a new replica
to take its place. This algorithm can be extended in a number
of ways, most notably by adding virtual servers such that a
given server appears in multiple locations in the ring to better
balance average load [16].

More sophisticated placement algorithms include
CRUSH [11], which was developed by Weil et al. and
forms a critical component of the Ceph file system [1].
CRUSH organizes storage targets into a hierarchical cluster
map (e.g., by rows, cabinets, shelves, and devices). Placement
rules govern how replicas are distributed within that hierarchy.
For example, a placement rule may enforce that replicas of
a given object span fault domains to improve resilience, or
a placement rule may enforce that replicas be placed in the
same bucket to improve locality.

Each level of the cluster map hierarchy is referred to as a
bucket, and each bucket uses a pluggable algorithm to map
objects to targets. In some sense CRUSH can therefore be
thought of as a suite of placement algorithms organized into
a hierarchy with flexible placement rules. The most popular
bucket type is the straw bucket. The straw bucket algorithm
chooses a location for an object by hashing together the object
ID, replica number, and target ID for each candidate target in
the bucket. The target with the “longest straw,” or the highest
hash value, is chosen to store the object. Each target can also
be assigned a scalar weight value to influence the distribution
of objects across targets. The Ceph file system (which uses
CRUSH) does not actually execute the CRUSH algorithm
independently for each object in the storage system, however.
Objects are instead translated into a smaller, fixed number of

 0

 10

 20

 30

 40

 50

P
e

rc
e

n
ta

g
e

1000 Genomes
total files: 557.7 thousand
total volume: 481.9 TiB

by file count
by data volume

 0

 10

 20

 30

 40

 50

P
e

rc
e

n
ta

g
e

Common Crawl Corpus
total files: 7.0 million
total volume: 344.6 TiB

 0

 10

 20

 30

 40

 50

4
 K

iB
8
 K

iB
1
6
 K

iB
3
2
 K

iB
6
4
 K

iB
1
2
8
 K

iB
2
5
6
 K

iB
5
1
2
 K

iB
1
 M

iB
2
 M

iB
4
 M

iB
8
 M

iB
1
6
 M

iB
3
2
 M

iB
6
4
 M

iB
1
2
8
 M

iB
2
5
6
 M

iB
5
1
2
 M

iB
1
 G

iB
2
 G

iB
4
 G

iB
8
 G

iB
1
6
 G

iB
3
2
 G

iB
6
4
 G

iB
1
2
8
 G

iB
2
5
6
 G

iB
5
1
2
 G

iB
1
 T

iB
2
 T

iB
4
 T

iB
8
 T

iB
1
6
 T

iB
3
2
 T

iB
6
4
 T

iB

P
e

rc
e

n
ta

g
e

File size bins

Mira
total files: 154.4 million
total volume: 7.5 PiB

Fig. 2. Distribution of file sizes across example data sets.

placement groups, and placement is calculated per group rather
than per object.

In previous work we developed a modular consistent hash-
ing library known as libch-placement to evaluate trade-
offs in consistent hashing algorithms [18]. In this work, we
add support for the CRUSH algorithm under the same abstract
API. The rebuild simulator used in this work leverages libch-
placement to interchangeably employ a variety of CRUSH or
consistent hashing algorithms for the placement of data.

B. Data populations

Large-scale storage system behavior is dependent not just
on algorithmic decisions but also on the nature of the data
being stored. Data population characteristics such as object
size can influence a variety of runtime behaviors, such as
the ratio of control to data messages, disk performance (seek
time vs. streaming throughput), pipeline transfer depth, and the
duration of time that pairs of servers are occupied by individual
object transfers.

Figure 2 compares the distribution of file sizes across three
different example data populations.1 The first two (the contents
of the 1000 Genomes [19] catalog of gene sequencing data
and the Common Crawl Corpus [20] catalog of web crawler
data) are available as Amazon Public Data Sets [21]. They are
intended to be processed by using a Hadoop [22] framework.
The third example shows the contents of the GPFS parallel
file system used on Mira, an IBM Blue Gene/Q system
administered by the Argonne Leadership Computing Facility.
Mira contains data from a diverse collection of scientific
domains in support of the DOE INCITE program [23], and the

1File size data was collected from the 1000 Genomes and Common Crawl
Corpus data sets via the S3 interface and from the Mira data set using the
GPFS mmapplypolicy utility.

 0

 10

 20

 30

 40

 50

P
e
rc

e
n
ta

g
e

File size distribution
total files: 22.7 million
total volume: 20.0 PiB

by file count
by data volume

 0

 10

 20

 30

 40

 50

4
 K

iB
8
 K

iB
1
6
 K

iB
3
2
 K

iB
6
4
 K

iB
1
2
8
 K

iB
2
5
6
 K

iB
5
1
2
 K

iB
1
 M

iB
2
 M

iB
4
 M

iB
8
 M

iB
1
6
 M

iB
3
2
 M

iB
6
4
 M

iB
1
2
8
 M

iB
2
5
6
 M

iB
5
1
2
 M

iB
1
 G

iB
2
 G

iB
4
 G

iB
8
 G

iB
1
6
 G

iB
3
2
 G

iB
6
4
 G

iB
1
2
8
 G

iB
2
5
6
 G

iB
5
1
2
 G

iB
1
 T

iB
2
 T

iB
4
 T

iB
8
 T

iB
1
6
 T

iB
3
2
 T

iB
6
4
 T

iB

P
e
rc

e
n
ta

g
e

Size bins

Object size distribution

32-64 MiB bin contains 95% of objects
by count and 99% by volume

Fig. 3. Distribution of file sizes in a synthetic data set generated by weighted
histogram sampling of the 1000 Genomes histogram.

data is accessed via conventional file system interfaces or high-
level parallel I/O libraries. These histograms display both the
number of files (red) and the volume of data (blue) for each file
size bin. This is an important distinction; for example, the 1000
Genomes data set contains a large number of metadata files
that are 4 KiB or less in size, but they constitute a negligible
fraction of the overall data volume.

In this study we focus on the 1000 Genomes use case. To
generate a representative object population, we first select file
sizes via weighted random sampling of the 1000 Genomes
histogram. We then divide files into constituent objects ac-
cording to Hadoop File System chunking policies [22], [24]:
each file is split into a collection of distinct 64 MiB objects.
This histogram sampling methodology can generate surrogate
object populations at a variety of scales while still retaining
the aggregate characteristics of a real-world data set. Figure 3
shows an example of the application of this synthetic data
population generation strategy. We generated a 20 PiB data set
based on the 1000 Genomes population and plot its distribution
in the top portion of the figure to confirm that it matches
trends observed in the top graph of Figure 2. The second
graph in Figure 3 shows a histogram of object sizes for the
same synthetic data set assuming that each file is divided into
64 MiB objects. Although smaller objects are present, the
population is dominated by the 64 MiB objects that contain
chunks of data for the largest files in the population.

C. Rebuild protocols

Once a fault has been detected and confirmed in a dis-
tributed object storage system, the surviving servers must
generate new replicas in order to regain the original level of
resilience. We use the term rebuild protocol to refer to the
steps in this process. Rebuild protocols can be categorized by
which entity (or entities) in the system coordinates the data
transfers, whether data is pushed or pulled, and how the data
itself is transmitted (i.e., concurrency and pipelining).

Although some storage systems elect to drive the rebuild
protocol from centralized subsets of nodes [3], our simulator
follows a model similar to that of Ceph [1] in which each

Server

Server

Hardware moduleSoftware module

Local
storage

Rebuild
protocol

Policy
engine

to other
servers

Network
(LogGP)

Placement
algorithms

...

Fig. 4. Discrete event simulation components.

surviving server is independently responsible for generating
its own replica copies. Each server therefore recovers at its
own pace with a high degree of concurrency. This approach is
naturally complemented by a “pull” transfer model in which
the destination servers explicitly request data from source
servers. This transfer model avoids overwhelming any one
server by allowing each server to control its own rebuild rate.

The transfer itself is pipelined in our simulator, as in
modern implementations, in order to increase utilization of
both the network and disk resources. The pipelining method
and parameters are described in greater detail in Section III-C.
We do not explicitly limit the pipeline depth other than to
constrain the memory consumption on each server to 1 GiB
for buffering incoming data and 1 GiB for buffering outgoing
data.

Our rebuild simulation includes distributed coordination,
pull-based transfers, and data pipelining. It does not model the
auxiliary fault-response steps of fault detection or calculation
of which objects to repair. The simulation instead begins at
time zero with the assumption that the fault and its impact
have already been assessed, and we focus our attention on the
data transfer component of fault recovery. We do not ignore
computational overhead, however; it is evaluated separately in
Section V.

III. SIMULATION METHODOLOGY

Discrete event simulation is a powerful tool for evaluating
large-scale storage systems. It enables the observation of
subtle, time-varying, and workload-dependent behavior that
cannot be captured by analytical models. It also enables the
exploration of fault scenarios that are expensive or otherwise
impractical to induce in real-world systems. In fact, if the
simulation performs well, it can be used to execute ensemble
experiments that reveal statistical trends over a large number
of randomized samples.

We developed a discrete event simulation of a distributed
object storage system2 using the CODES [25] toolkit, which
in turn is built on the ROSS high-performance parallel discrete
event simulator [26]. The storage system model is decomposed
into submodels for key hardware components and software
components as illustrated in Figure 4. The policy engine is
responsible for managing overall server state. The rebuild
component implements a distributed data transfer protocol atop

2https://xgitlab.cels.anl.gov/codes/codes-rebuild

 0

 500

 1000

 1500

 2000

 4 8 16
 32

 64
 128

 256
 512

1 KiB

2 KiB

4 KiB

8 KiB

16 KiB

32 KiB

64 KiB

128 KiB

256 KiB

512 KiB

1 M
iB

2 M
iB

4 M
iB

8 M
iB

16 M
iB

32 M
iB

64 M
iB

B
a
n
d
w

id
th

 (
M

iB
/s

)

Message size (bytes)

empirical: mpptest
simulated: loggp model

Fig. 5. Point-to-point bandwidth comparison between empirical and simulated
performance on QDR InfiniBand network with MPI.

disk and network resources. It employs an object placement
algorithm component to determine the location of replicas on
the system. The simulation executes with network message
and disk buffer granularity and tracks the state of every object
in the system. Although we use Ceph’s CRUSH algorithm
for object placement, the simulator does not model the actual
Ceph file system. It is a generalized model of a distributed
object rebuild protocol.

A. Network model validation

We chose a production Linux cluster at Argonne National
Laboratory to serve as a representative example of a data
center platform and interconnect. Each node contains two 2
GHz AMD Opteron 6128 processors, 64 GiB of main memory,
and a single-port Mellanox ConnectX 2 QDR InfiniBand
NIC. The nodes are interconnected via four Mellanox IS-5600
switches that are shared with other computational resources.

We modeled communication costs for the InfiniBand net-
work using a LogGP model [27]. We assume that each node
has a full-duplex network card with independent send and
receive queues and infinite buffering in the switch complex.
The parameters for our LogGP model are obtained by using the
netgauge utility [28]. Our simulation deviates from the tra-
ditional LogGP model in two ways. First, netgauge assumes
that the overhead parameter (o) (representing the CPU time
consumed during transmission) overlaps with network fabric
transmission costs on modern networks, so we do not apply the
o parameter to the communication time calculation. Second,
we take advantage of the fact that netgauge calculates
LogGP parameters independently for a range of message sizes
by using these parameters in a lookup table in our model. This
approach allows the model to more accurately reflect protocol
crossover points and other fabric-specific characteristics.

Figure 5 compares the empirically measured point-to-
point bandwidth on the Linux cluster (measured by using
mpptest [29]) with a simulation of the point-to-point perfor-
mance using our simulation framework. We see that the simu-
lated performance closely matches the performance trends on
the example system, including an apparent protocol crossover
point between 4 KiB and 8 KiB as well as an unexpected

https://xgitlab.cels.anl.gov/codes/codes-rebuild

decline in performance between 4 MiB and 8 MiB. The overall
RMSE of the model is 58.128 MiB/s for this experiment.

B. Disk model validation

We assume that each storage server is attached to a com-
modity storage array (JBOD). We use an LSI SAS 9207-8i
controller and LSI SAS2x36 expander as found in a DataON
DNS-9470 product as an example of this class of storage
device. Our example JBOD was configured with 10 Seagate
Constellation ES3 3 GB SATA drives, each with an advertised
peak throughput of 175 MB/s, an average latency of 4.16
ms, and 128 MiB of cache. The disks were combined into
a single volume using software RAID (mdraid) in a RAID0
configuration with a 512 KiB chunk size.

The design of our disk model was driven by two require-
ments. The first requirement was ROSS simulation framework
compatibility. ROSS achieves its highest performance at scale
when operating in optimistic mode via the Time Warp [30]
protocol: each model entity independently and speculatively
processes its own local event population. If it receives an
event with a time stamp that is out of order with respect
to its current state, then it uses reverse computation to “roll
back” to a coherent point in time. The popular DiskSim [31]
model is incompatible with this approach because it does not
provide a mechanism to reverse state. We will investigate the
possibility of adding this capability to DiskSim in future work.
The second requirement for our disk model was that it be
based on real-world device characteristics such as seek time
and bandwidth. This approach enables “what-if” exploration
by altering model parameters to reflect hypothetical hardware
configurations, but it precludes the use of black-box disk
models [32], [33]. We instead elected to construct a disk model
based on the analytical techniques described by Ruemmler and
Wilkes [34].

The input parameters used in this study were collected by
executing the fio [35] benchmark on the DataOn test system
with 10 disks. We measured I/O performance for 60 seconds
at each access size as the access size was varied from 4 KiB
to 8 MiB for each of sequential read, sequential write, random
read, and random write access patterns. The libaio engine
was used in all cases with an iodepth of 4 and direct I/O. We
set the model’s rate parameter to the maximum rate achieved
by the sequential read and sequential write measurements. The
overhead parameter was set to the median completion latency
minus the transfer rate for the 4K request size. The seek
parameters were set to the difference between the sequential
and random latency values divided by the iodepth (4) at each
request size. Read and write operations therefore use different
rate and overhead values in our model, while the seek time
for random operations is determined via a lookup table based
on the access size. We define a random I/O operation as any
operation that does not begin within 512 bytes of the previous
operation. The Ruemmler and Wilkes model calls for a fixed
seek parameter, but we were unable to achieve a good model fit
using this approach. We believe the reason is caching behavior,
which is not reflected in the Reummler and Wilkes model.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

4 8 16 32 64 128
256

512
1024

2048
4096

8192

B
a
n
d
w

id
th

 (
M

iB
/s

)

Access size (KiB)

sequential write
sequential read

random read
random write

Fig. 6. Disk bandwidth comparison between fio benchmark (solid lines)
and simulation results (dashed lines) as the access size is varied.

TABLE I
ROOT MEAN SQUARE ERROR OF DISK SIMULATION.

Mode RMSE (MB/s) RMSE (%)
random read 10.75 8.69
random write 11.95 3.84
sequential read 90.75 9.45
sequential write 13.32 1.36

Figure 6 compares the empirically measured disk bandwidth
(measured using fio) with results from our simulation envi-
ronment when configured to continually issue four concurrent
I/O operations. Table I shows the overall RMSE for each
simulation mode (also known as the demerit figure [34] for
the model). We have a cumulative error of less than 10% in
each mode.

C. Pipelining protocol

Pipelining is a common technique for optimizing large inter-
server data transfers [36], [24], [22] and is therefore criti-
cal to performance when rebuilding replicas. We implement
pipelining in our model by dividing objects into smaller buffers
and then transferring those buffers with asynchronous network
operations and multithreaded disk I/O. The pipeline buffer size
should be large enough to amortize startup costs but small
enough to maximize concurrency. Figure 7 shows the results of
a simulated pipelined transfer of a single 1 TiB object between
two servers using the network and disk parameters obtained
in Sections III-A and III-B. Each server was configured to
commit a maximum of 1 GiB of RAM to receiving/writing
data and 1 GiB of RAM to reading/sending data. We use
separate memory buffer pools for sending and receiving in
order to ensure that servers are always able to make forward
progress on rebuilding their own local replica even while
servicing pull requests from peers. The pipelined transfer
reaches a near-peak rate of 1.5 GiB/s using a 16 MiB buffer
size; both servers are bottlenecked by storage throughput. We
also plot the transfer bandwidth with pipelining disabled and
observe that the servers are unable to saturate their hardware

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 KiB

128 KiB

256 KiB

512 KiB

1 M
iB

2 M
iB

4 M
iB

8 M
iB

16 M
iB

32 M
iB

64 M
iB

128 M
iB

256 M
iB

512 M
iB

1 G
iB

B
a
n
d
w

id
th

 (
M

iB
/s

)

Buffer size

with pipelining
without pipelining

Fig. 7. Sustained server-to-server rebuild bandwidth for a 1 TiB object as the
pipeline buffer size is varied from 64 KiB to 1 GiB.

TABLE II
TOTAL NUMBER OF PLACEMENT GROUPS AND OBJECTS IN EACH

CONFIGURATION

No. of Servers Placement Groups Objects
4 128 1,373,187
8 512 2,745,833

16 4096 5,494,324
32 4096 10,990,294
64 4096 21,984,426

128 8192 43,971,596
256 16384 87,949,846
512 32768 175,897,623

1024 65536 351,765,871

resources in this configuration. Based on these results, we
configured our storage system model to enable pipelining
with a buffer size of 16 MiB. Note that the peak aggregate
transfer bandwidth is roughly approximated by the point-to-
point peak bandwidth for n/2 server pairs. This hypothetical
configuration would not take advantage of full-duplex network
capability, but it would produce sequential streaming access
patterns at each storage device. For 512 server pairs (1,024
total servers) at 1.5 GiB/s, this results in a possible aggregate
rate of 768 GiB/s. This rate is well within the capabilities of
a large-scale InfiniBand switch complex.

IV. CRUSH CASE STUDY

We begin our experiments by evaluating the rebuild behavior
of a hypothetical object storage system with the following
configuration. Objects are mapped to servers by using the
CRUSH algorithm as implemented in Ceph 0.94.3. The object
population is generated from a histogram of 1000 Genomes
file sizes as described in Section II-B. The network, disk,
and pipelining parameters are set to reflect the hardware
parameters as described and validated in Section III.

Each object is 3-way replicated. The overall object popu-
lation size is scaled to produce at least 20 TiB of data (60
TiB when accounting for 3-way replication) and at least one
million objects per server. CRUSH was configured with a flat
CRUSH map (i.e., all servers belong to a single bucket with
equal weights) using a straw bucket type. Furthermore, we
followed the placement group parameters recommended in the
Ceph documentation [37] such that the number of placement
groups in the storage system increases with the number of

 1

 10

 100

 1000

4 8 16 32 64 128
256

512
1024

R
e
b
u
ild

 r
a
te

 (
G

iB
/s

)

Number of servers

430.6 GiB/s

 49.4 GiB/s

Median simulation result
Projected ideal

Fig. 8. Simulated aggregate rebuild rate following a single server failure using
an example CRUSH configuration.

servers rather than the number of objects. Table II shows
the number of placement groups and number of objects (not
counting replicas) used in each configuration.

The simulation begins with the failure of a single randomly
chosen server. We then measure the elapsed time for all af-
fected replicas to be reconstructed on surviving servers. We do
not simulate any auxiliary procedures such as fault detection
or synchronization; this model focuses exclusively on reading,
transferring, and writing replica data, the most time-consuming
aspect of fault recovery in our problem domain. We divide
the aggregate amount of data transferred by the elapsed time
to produce an aggregate rebuild rate. Figure 8 shows the
aggregate rebuild rate for a range of system sizes from 4
to 1,024. Both axes use a logarithmic scale. We gathered 15
random samples for each configuration by choosing a random
server to fail. The only exceptions are the 4 and 8 server data
points, in which we gathered 4 and 8 samples respectively
because there are not 15 distinct servers to select for failure.
Box-and-whiskers plots illustrate the minimum, 1st quartile,
median, 4th quartile, and maximum for each set of samples.

We also annotate the graph by extrapolating ideal, linear
scaling from the 4-server median value; this is shown in green.
For up to 16 servers, we see that the simulated rebuild rate
tracks the ideal rebuild rate reasonably well. It tapers off as
the system increases in size, however, ultimately reaching a
median rebuild rate of 49.4 GiB/s with 1,024 servers. This
aggregate rebuild rate is an order of magnitude slower than
the projected ideal rate.

We selected the slowest 64-server configuration for further
investigation: this example clearly shows suboptimal perfor-
mance yet is small enough for clarity in visualization. We
instrumented the simulation to record the exact volume of data
transferred between pairs of servers and plotted those values
using the Circos software package [38]. The result is shown
in Figure 9. Servers are represented by color-coded rectangles
around the perimeter, and each is labeled with a server index
number from 0 to 63. Server 10 is omitted because it is the
server that failed in this example. A small histogram is also

Fig. 9. Circos diagram of data transfers between servers in the slowest 64-
server configuration from Figure 8.

associated with each server: its width indicates the relative
volume of data transferred (both sending and receiving) by
that server, while its height indicates the amount of time that
the server took to complete its rebuild procedure. Ribbons
connecting pairs of servers represent the flow of data between
those servers.

This figure illustrates a critical phenomenon: the rebuild
load is not well balanced among surviving servers. The annota-
tions at the bottom highlight an additional nonintuitive finding:
the server that transferred the most total data was not the
server that took the longest to complete its rebuild procedure.
Server 32 exchanged data with many more peers than did
server 18, allowing it to diversify its traffic and complete its
rebuild procedure sooner despite transferring more data. This
result indicates the presence of hot spots or data dependencies
that hindered some servers more than others. While advanced
scheduling policies beyond the scope of this paper could
help mitigate such hindrances, the underlying imbalance is
an unavoidable shortcoming of the placement algorithm when
used at this scale.

Figure 10 investigates the root cause of the imbalance by
showing a histogram, sorted by count, of the number of new
replicas generated on each of the 63 surviving servers. The
newly generated replicas are not evenly distributed; in fact, this
example reveals a stair-stepped pattern with the most active
server receiving over 35,000 objects and the least active servers

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10
 20

 30
 40

 50
 60

 0

 1

 2

 3

 4

 5

 6

 7

 8

O
b
je

c
ts

 r
e
c
e
iv

e
d

P
la

c
e
m

e
n
t
g
ro

u
p
s
 j
o
in

e
d

Servers, ordered by re-replication volume

Objects (left axis)

Placement groups (right axis)

Fig. 10. Histogram of the number of new replicas received by each server
from Figure 9, sorted by volume. The corresponding PG layout is overlayed
for comparison on the 2nd y axis.

receiving no objects at all. We use the right side axis to overlay
a plot of the number of new placement groups each server
joined as a result of the fault. The range of the per-server
placement group count varies from 0 to 7 but clearly matches
the trend in the per-server object count.

Recall from Table II that this 64-server system is using
4,096 placement groups. With 3-way replication, each server
therefore participates in an average of 192 groups. The failed
server in this specific example (server 10) participates in 190
placement groups. When server 10 fails, each of those 190
placement groups must promote exactly one new server to
compensate for the loss of server 10. Because the CRUSH
algorithm is pseudo-random, however, those 190 replica tar-
gets are not guaranteed to be evenly distributed across the 63
surviving servers. In fact, one server (server 28) was added
to 7 placement groups, while four other servers (servers 7, 9,
and 55) were not added to any new placement groups at all.

From this analysis it is clear that subtle high-level place-
ment policies, such as the use of placement groups in
Ceph, can degrade recovery time by restricting replica
declustering in unexpected ways. In this case aggregate
rebuild performance is constrained in a way that is not obvious
at modest scale. The placement policy is too course-grained to
take advantage of the available aggregate bandwidth on larger
systems.

A. Hierarchical CRUSH maps

One of the distinguishing features of CRUSH is that it
enables the construction of hierarchical maps that organize
storage targets according to their physical layout. A production
storage system with hundreds or thousands of servers would
likely utilize this functionality rather than placing all servers
in a single flat bucket. We revisited the three largest configura-
tions from Figure 8 using a hierarchical cluster map in order to
investigate how this configuration would impact placement and
rebuild behavior. We assumed that servers were organized as

 1

 10

 100

 1000

4 8 16 32 64 128
256

512
1024

R
e
b
u
ild

 r
a
te

 (
G

iB
/s

)

Number of servers

430.6 GiB/s

 45.6 GiB/s

Median simulation result
Projected ideal

Fig. 11. Simulated aggregate rebuild rate following a single server failure
using a CRUSH configuration with a hierarchical cluster map.

follows: 16 servers per rack, 8 racks per row, and either 2, 4, or
8 rows depending on whether there were 256, 512, or 1,024
total servers in the system. We then constructed a CRUSH
placement rule enforcing that each replica for an object must
reside on a different rack.

Figure 11 shows the result of repeating the simulation in
this configuration. The median aggregate rebuild rate with
1,024 servers was slightly reduced in comparison with the
flat bucket configuration (down to 45.6 GiB/s rather than 49.4
GiB/s). The reason that the rack-aware placement rule slightly
reduces the declustering relative to the flat bucket topology by
limiting the number of valid replica set permutations in order
to protect against expected correlated failure modes. We focus
our analysis on flat topologies for clarity in the remainder of
this work.

V. IMPROVING REBUILD PERFORMANCE

In this section we revisit the simulations from Section IV
to evaluate strategies for improving the aggregate rebuild
rate. Although we use the CRUSH placement algorithm as
our starting point, our goal is not to prescribe Ceph-specific
tuning parameters but rather to explore how object placement
algorithms in general can be architected to improve rebuild
time and MTTDL. Recall from Section III that our simulation
does not model the Ceph file system and therefore does not
necessarily capture the ramifications of changes to recom-
mended Ceph parameters.

A. Strategy: eliminating placement groups

One straightforward potential strategy to improve declus-
tering in the CRUSH algorithm would be to simply eliminate
placement groups and instead calculate the placement of each
object independently using the CRUSH algorithm. Figure 12
shows the aggregate rebuild rate that can be achieved using
this approach. As in Figure 8, we plot the ideal scaling
alongside the simulated rate for comparison. In this case we
find that the throughput closely matches the projected ideal at
all tested scales because of a very even distribution of rebuild

 1

 10

 100

 1000

4 8 16 32 64 128
256

512
1024

R
e
b
u
ild

 r
a
te

 (
G

iB
/s

)

Number of servers

430.6 GiB/s projected,
430.8 GiB/s simulated

Median simulation result
Projected ideal

Fig. 12. Simulated aggregate rebuild rate following a single server failure by
using an example CRUSH configuration with no placement groups.

 1

 10

 100

 1000

 10000

 4 8 16
 32

 64
 128

 256
 512

 1024

S
in

g
le

-n
o
d
e
 p

la
c
e
m

e
n
t
c
a
lc

u
la

ti
o
n
 r

a
te

(t
h
o
u
s
a
n
d
s
 o

f
o
p
s
/s

)

Number of servers

Fig. 13. CRUSH straw bucket calculation rate as the number of servers in
the bucket is increased.

traffic among surviving servers. We observe that distributed
rebuild protocols are capable of near-ideal scalability
when using object-granular replica placement policies. This
level of granularity also opens up the possibility of finer-
grained scheduling or prioritization of reconstruction to further
improve MTTDL [12]. Note that the hypothetical removal
of placement groups might have significant ramifications in
the Ceph storage system as a whole. The placement group
construct serves a variety of purposes in fault detection, write-
ahead logging, and peering. Analysis of such Ceph-specific
design issues is beyond the scope of this paper, however; we
limit our analysis to the more general problem of data layout
in object storage systems.

Object-granular placement has a downside, however. Our
simulation does not model the CPU cost of the object place-
ment calculation, just the data movement cost assuming that
the new replica locations are already known. The straw bucket
algorithm is inherently computationally expensive it requires
an O(n) calculation per object, where n is the number of
servers in the system. Recall from Section II-A that the

target server for a given object ID cannot be chosen without
first hashing that ID against the ID of every server in the
system. This situation is illustrated in Figure 13, which shows
the placement calculation rate in a CRUSH straw bucket as
the number of servers is increased. This measurement was
performed on a Linux node equipped with two 2.4 GHz Intel
Haswell E5-2620 v3 processors and a randomly generated
collection of object ID values. The CRUSH calculation can
be performed at a rate of nearly 1 million objects per second
with 4 servers in the bucket. The rate falls to 7 thousand
objects per second with 1,024 servers in the bucket. This would
be prohibitively expensive for object-granularity placement in
systems with billions of objects, especially when invoking
procedures that call for bulk placement calculation such as
rebuild, file system consistency checking, and data scrubbing.
In some cases this computation could be overlapped with
other activity, but efficient bulk calculation would offer more
flexibility in how those operations can be performed.

B. Strategy: employing consistent hashes as bucket algorithms

The CRUSH algorithm also provides uniform, list and
tree bucket types as alternatives to the straw bucket type, but
those algorithms require superfluous reshuffling of unaffected
objects when servers are added or removed, a property that
makes them undesirable for use in large-scale storage systems.
An ideal CRUSH bucket algorithm would avoid superfluous
replica movement while striking a balance between replica
declustering capability and computational efficiency. In pre-
vious work we demonstrated that multiple consistent hashing
algorithms can meet this goal [18], the most straightforward
of which is a one-dimensional ring with a Euclidian distance
metric, similar to that illustrated in Figure 1, but with a
high ratio of virtual nodes for each physical node. If the
virtual node ID values are pseudo-randomly generated, then
they can dramatically increase the number of replica ordering
permutations on the ring.

This ring-based consistent hashing algorithm can be adapted
for use as a CRUSH bucket algorithm as follows. When the
CRUSH bucket is initialized, N × V pseudo-random virtual
IDs are generated by hashing each of the physical server
numbers (or items in CRUSH terminology) with a sequence
of values from 0 to V . The resulting virtual IDs (along with
mappings back to their original underlying bucket items) are
placed in an array and sorted by virtual ID value. New virtual
IDs can be generated and added to the array if the bucket is
expanded. Each virtual ID element consumes an additional 32
bytes of memory in our current implementation (one integer
each for the virtual ID, underlying physical ID, array index,
and total array size) though that could be optimized for more
compact memory use.

The CRUSH lookup function performs an O(log n) binary
search through the sorted virtual ID array to find the numeri-
cally closest virtual ID to a given object ID. CRUSH weights
can be applied by scaling the number of virtual IDs generated
for a given item to alter the frequency that its virtual nodes

 1

 10

 100

 1000

4 8 16 32 64 128
256

512
1024

R
e
b
u
ild

 r
a
te

 (
G

iB
/s

)

Number of servers

430.6 GiB/s projected,
409.8 GiB/s simulated

Median simulation result
Projected ideal

Fig. 14. Simulated aggregate rebuild rate following a single server failure by
using the CRUSH vring bucket type and no placement groups.

 1

 10

 100

 1000

 10000

 4 8 16
 32

 64
 128

 256
 512

 1024

S
in

g
le

-n
o
d
e
 p

la
c
e
m

e
n
t
c
a
lc

u
la

ti
o
n
 r

a
te

(t
h
o
u
s
a
n
d
s
 o

f
o
p
s
/s

)

Number of servers

straw bucket
vring bucket

Fig. 15. CRUSH vring bucket and straw bucket calculation rate as the number
of servers in the bucket is increased.

appear on the ring, thereby altering the probability that it will
be chosen in the lookup routine.

We implemented this algorithm in a new CRUSH bucket
type (called the vring bucket type)3 and set the default value
of V to 1,024 (i.e., 1,024 virtual IDs per item). Figure 14
shows the result of repeating the aggregate rebuild rate mea-
surement of Figure 12 using this new bucket algorithm. At
1,024 servers it is within 5% of the ideal scaling target. This is
slightly slower than the rate achieved using the straw bucket
type with per-object placement (i.e., no placement groups), but
in Figure 15 we see that it achieves this rebuild rate with a
much lower computational overhead. At 1,024 servers it can
calculate object placement at nearly 597 thousand objects per
second, an 82x improvement over the straw bucket algorithm.
This improvement in computational efficiency would reduce
overall latency as well as the time needed to recalculate
placement for objects following a failure. We therefore find

3https://xgitlab.cels.anl.gov/codes/ch-placement/raw/master/patches/
ceph-0.94.3-crush-vring.patch

https://xgitlab.cels.anl.gov/codes/ch-placement/raw/master/patches/ceph-0.94.3-crush-vring.patch
https://xgitlab.cels.anl.gov/codes/ch-placement/raw/master/patches/ceph-0.94.3-crush-vring.patch

 0

 10

 20

 30

 40

 50

P
e
rc

e
n
ta

g
e

1000 Genomes with chunking

32-64 MiB bin contains 95% of objects
by count and 99% by volume

by file count
by data volume

 0

 10

 20

 30

 40

 50

4
 K

iB
8
 K

iB
1
6
 K

iB
3
2
 K

iB
6
4
 K

iB
1
2
8
 K

iB
2
5
6
 K

iB
5
1
2
 K

iB
1
 M

iB
2
 M

iB
4
 M

iB
8
 M

iB
1
6
 M

iB
3
2
 M

iB
6
4
 M

iB
1
2
8
 M

iB
2
5
6
 M

iB
5
1
2
 M

iB
1
 G

iB
2
 G

iB
4
 G

iB
8
 G

iB
1
6
 G

iB
3
2
 G

iB
6
4
 G

iB
1
2
8
 G

iB
2
5
6
 G

iB
5
1
2
 G

iB
1
 T

iB
2
 T

iB
4
 T

iB
8
 T

iB
1
6
 T

iB
3
2
 T

iB
6
4
 T

iB

P
e
rc

e
n
ta

g
e

Size bins

Mira with striping

1-2 MiB bin contains
61% of objects by count

512-1024 MiB bin contains
36% of objects by volume

Fig. 16. Comparison of object sizes in synthetic data sets generated by
weighted histogram sampling.

that consistent hashing algorithms can be adapted for use
within CRUSH to significantly reduce CPU cost without
compromising declustering.

C. Impact of data population

We observed in Section II-B that different data sets can
exhibit substantially different distributions of file and object
sizes. We repeated the experiments shown in Figure 14 with
a different object population to illustrate how this can impact
an experimental evaluation. The new object population was
generated by weighted statistical sampling of the Mira file
system histogram. Each file was then decomposed into striped
(rather than chunked) object sets of up to N/3 objects, each of
which in turn used 3-way replication. The size of the objects
was set according to a round-robin striping policy with a 4
MiB stripe unit as might be found in a PVFS [39] or Lustre [2]
parallel file system.

Figure 2 already compared the 1000 Genomes and Mira data
sets in terms of distribution of file sizes. When we compare
the distribution of underlying object sizes, the discrepancy is
even more pronounced, as seen in Figure 16. The Mira data set
includes a large number of small files that in turn map to small
objects in the synthetic object population. The largest objects
in the Mira population are also far larger than the largest
objects in the 1000 Genomes population. In this example, the
largest individual object contains 186 GiB of data. The reason
is that the Hadoop-style chunking imposes an object size limit
of 64 MiB, while a round-robin striped object layout has no
such limit on underlying object size. The objects continue to
grow indefinitely as the file is appended.

Figure 17 illustrates how this difference in object popula-
tions translates into aggregate rebuild performance by com-
paring rebuild rates for the 1000 Genomes data set and the
Mira data set. The scaling trend is similar, but the object
population based an HPC file system with striping achieves
a median aggregate rebuild rate of only 189.8 GiB/s, less than
half of the aggregate rebuild rate of the same experiment with
the 1000 Genomes object population. There are two reasons
for this. The first is that the greater number of small objects

 1

 10

 100

 1000

4 8 16 32 64 128
256

512
1024

R
e
b
u
ild

 r
a
te

 (
G

iB
/s

)

Number of servers

409.8 GiB/s

189.8 GiB/s

1000 Genomes population with chunking
Mira population with striping

Fig. 17. Simulated aggregate rebuild rate following a single server failure
using the CRUSH vring bucket type with two different data population
examples.

reduces efficiency by increasing the ratio of control message
traffic to data transfer traffic during rebuild. A more significant
factor, however, is that the presence of much larger objects
exacerbates contention during rebuild. Longer object transfers
will dominate server activity and potentially delay the transfer
of smaller objects unless the system implements policies to
prevent this phenomenon. A general solution for maintaining
rebuild efficiency when faced with a wide variety of data-
set properties is beyond the scope of this work. For now we
simply observe that data population characteristics can have
a significant impact on the efficiency of distributed rebuild
algorithms. Data uniformity assumptions could potentially
skew the results of experimental evaluations.

D. Assessment of PDES methodology

All the simulations in this study were performed by using
optimistic parallel discrete simulation in the CODES simu-
lation toolkit. The most complex of these were the 1,024-
server simulations using the striped Mira population example
in Figure 17. The first sample in that set tracked the state of
roughly 3.9 billion replicas (60 PiB), 3.8 million of which
(61 TiB) were rebuilt during the simulation and modeled with
message-level granularity. This effort required processing over
200 million discrete events. We executed the simulation using
256 MPI processes spread across 22 nodes of a Linux cluster
equipped with 2.4 GHz Intel Haswell E5-2620 v3 processors
and an InfiniBand network. It completed in 30.2 seconds,
yielding an effective simulation rate of 6.7 million events per
second. This performance not only enabled rapid turnaround
time on experimental questions but also allowed us to execute
ensemble simulations with random failure permutations in
order to distinguish aggregate trends from outliers. We found
that high-fidelity parallel discrete event simulation enables
otherwise intractable evaluation of fault scenarios at scale.
The largest scenarios evaluated in this work not only are
impractical for real-world experimentation but also exceed
the capabilities of sequential simulation in some cases. If the

example highlighted above is executed serially, it exhausts the
384 GiB of RAM available on any individual node of our
simulation platform and thus fails to complete.

VI. RELATED WORK

This work relies heavily upon the CRUSH algorithm de-
veloped by Weil et al. [11]. The CRUSH framework offers
considerable flexibility in object placement by providing a
generalized method to express hierarchical organizations, de-
coupling placement rules from the topology description, and
providing a modular mechanism to experiment with bucket
algorithms. It is also a valuable testbed for experimentation
with placement strategies as shown in this work.

Venkatesan et al. contrasted clustered and declustered place-
ment in distributed storage [9], [12] using both analytical and
simulation methods. Their work revealed previously unknown
relationships between declustering methods, replication levels,
and the effective MTTDL of a storage system. They did not
evaluate object-based storage specifically, however, or identify
placement algorithms that could be used to achieve declustered
placement.

Cidon et al. [40] explored placement strategies that reduce
the probability of data loss events in distributed storage by
reducing the number of server combinations (and thus corre-
lated failure scenarios) that hold all copies of a given object.
Their work assumes a high fixed cost of backup recovery upon
data loss, in which case reducing the probable frequency of
data loss is much more important than reducing the scope of
data loss. Our work in contrast focuses on efficient handling
of faults that do not result in data loss. Future storage systems
will likely need to strike a balance between these two goals
according to their expected failure modes.

Wozniak et al. studied the rebuild behavior in object storage
systems using a coarse-grained simulation [41]. They calcu-
lated the fraction of the overall workload serviced by the most
heavily loaded servers during rebuild but did not consider the
impact of declustering.

Welch et al. described distributed object reconstruction in
the Panasas Parallel File System [3]. Their approach uses uni-
form random placement rather than an algorithmic placement
function, uses parity encoding for large files, and drives recon-
struction from metadata managers rather than independently at
each server.

VII. CONCLUSIONS AND FUTURE WORK

We evaluated the impact of data placement policies on
resilience using a parallel discrete event simulation of large-
scale replicated object storage rebuild protocols. Our findings
include the following:

• Subtle high-level placement policies, such as the use of
placement groups in Ceph, can degrade recovery time by
restricting replica declustering in unexpected ways.

• Distributed rebuild protocols are capable of near-ideal
scalability when using object-granular replica placement.

• Consistent hashing algorithms can be adapted for use
within CRUSH to significantly reduce CPU cost without
compromising declustering.

• Data population characteristics can have a significant
impact on the efficiency of distributed rebuild algorithms.

• High-fidelity parallel discrete event simulation enables
otherwise intractable evaluation of fault scenarios at scale.

These findings highlight both algorithmic and evaluation
lessons that can be adopted in future storage systems to
improve resilience and performance.

In future work we would like to explore more complex
failure modes. We would also like to evaluate the reconstruc-
tion of erasure coded data in addition to replicated data. The
rebuild protocol model described in this work can also be
combined with workload models [42], [43], fault detection
protocol models [44], and other components to produce a
holistic view of large-scale storage system behavior. We would
also like to leverage the variety of submodels available in
CODES [45], [46] to evaluate rebuild strategies for different
system architectures, such as those that are anticipated in
upcoming exascale HPC systems.

ACKNOWLEDGMENTS

This material was based upon work supported by the U.S.
Department of Energy, Office of Science, Advanced Scientific
Computer Research, under contract DE-AC02-06CH11357.
The research used resources from the Argonne Leadership
Computing Facility (ALCF).

REFERENCES

[1] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307–320.

[2] Open Scalable File Systems, Inc., “Lustre File System.” [Online].
Available: http://opensfs.org/lustre/

[3] B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable performance of the Panasas parallel
file system.” in FAST, vol. 8, 2008, pp. 1–17.

[4] Scality, “The Scality RING.” [Online]. Available: http://www.scality.
com/ring/

[5] Amazon Web Services Inc., “Amazon Simple Storage Service (S3).”
[Online]. Available: https://aws.amazon.com/s3/

[6] J. Arnold, OpenStack Swift: Using, Administering, and Developing for
Swift Object Storage. O’Reilly Media, Inc., 2014.

[7] Data Direct Networks, “WOS: Object Storage.” [Online]. Available:
http://www.ddn.com/products/object-storage-web-object-scaler-wos/

[8] K. K. Rao, J. Hafner, and R. Golding, “Reliability for networked
storage nodes,” in Dependable Systems and Networks, 2006. DSN 2006.
International Conference on, June 2006, pp. 237–248.

[9] V. Venkatesan, I. Iliadis, X.-Y. Hu, R. Haas, and C. Fragouli, “Effect
of replica placement on the reliability of large-scale data storage sys-
tems,” in 2010 IEEE International Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2010, pp. 79–88.

[10] M. Holland and G. A. Gibson, “Parity declustering for continuous
operation in redundant disk arrays,” in Proceedings of the Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS V. New York,
NY, USA: ACM, 1992, pp. 23–35. [Online]. Available: http:
//doi.acm.org/10.1145/143365.143383

http://opensfs.org/lustre/
http://www.scality.com/ring/
http://www.scality.com/ring/
https://aws.amazon.com/s3/
http://www.ddn.com/products/object-storage-web-object-scaler-wos/
http://doi.acm.org/10.1145/143365.143383
http://doi.acm.org/10.1145/143365.143383

[11] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, scalable, decentralized placement of replicated data,” in
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
ser. SC ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1188455.1188582

[12] V. Venkatesan, I. Iliadis, C. Fragouli, and R. Urbanke, “Reliability of
clustered vs. declustered replica placement in data storage systems,”
in Modeling, Analysis Simulation of Computer and Telecommunication
Systems (MASCOTS), 2011 IEEE 19th International Symposium on, July
2011, pp. 307–317.

[13] P. Zave, “Using lightweight modeling to understand chord,” SIGCOMM
Comput. Commun. Rev., vol. 42, no. 2, pp. 49–57, Mar. 2012. [Online].
Available: http://doi.acm.org/10.1145/2185376.2185383

[14] B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 337–350, 2010.

[15] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ser.
SIGCOMM ’01. New York, NY, USA: ACM, 2001, pp. 149–160.
[Online]. Available: http://doi.acm.org/10.1145/383059.383071

[17] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web,” in Pro-
ceedings of the twenty-ninth annual ACM symposium on Theory of
Computing. ACM, 1997, pp. 654–663.

[18] P. Carns, K. Harms, J. Jenkins, M. Mubarak, R. B. Ross, and
C. Carothers, “Consistent hashing distance metrics for large-scale object
storage (poster),” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC15), 2015.

[19] 1000 Genomes Project Consortium and others, “A map of human
genome variation from population-scale sequencing,” Nature, vol. 467,
no. 7319, pp. 1061–1073, 2010.

[20] Common Crawl Foundation, “Common Crawl.” [Online]. Available:
http://www.commoncrawl.org/

[21] Amazon Web Services Inc., “AWS Public Data Sets.” [Online].
Available: https://aws.amazon.com/public-data-sets/

[22] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies, ser. MSST
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.
[Online]. Available: http://dx.doi.org/10.1109/MSST.2010.5496972

[23] U.S. Department of Energy, “INCITE program.” [Online]. Available:
http://www.er.doe.gov/ascr/incite/

[24] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp.
29–43. [Online]. Available: http://doi.acm.org/10.1145/945445.945450

[25] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross, “Codes:
Enabling co-design of multi-layer exascale storage architectures,” in
Proceedings of the Workshop on Emerging Supercomputing Technologies
2011, 2011.

[26] P. D. Barnes, Jr., C. D. Carothers, D. R. Jefferson, and J. M.
LaPre, “Warp speed: Executing time warp on 1,966,080 cores,” in
Proceedings of the 2013 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, ser. SIGSIM-PADS ’13. New
York, NY, USA: ACM, 2013, pp. 327–336. [Online]. Available:
http://doi.acm.org/10.1145/2486092.2486134

[27] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the LogP model – one
step closer towards a realistic model for parallel computation,” in
Proceedings of the Seventh Annual ACM Symposium on Parallel
Algorithms and Architectures, ser. SPAA ’95. New York, NY, USA:
ACM, 1995, pp. 95–105. [Online]. Available: http://doi.acm.org/10.
1145/215399.215427

[28] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm, “NetGauge: A
network performance measurement framework,” in High Performance
Computing and Communications. Springer, 2007, pp. 659–671.

[29] W. Gropp and E. Lusk, “Reproducible measurements of MPI perfor-
mance characteristics,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Springer, 1999, pp. 11–18.

[30] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang.
Syst., vol. 7, no. 3, pp. 404–425, Jul. 1985. [Online]. Available:
http://doi.acm.org/10.1145/3916.3988

[31] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The
DiskSim simulation environment version 4.0 reference manual (cmu-
pdl-08-101),” Parallel Data Laboratory, Carnegie Mellon University,
p. 26, 2008.

[32] J. Garcia, L. Prada, J. Fernandez, A. Nunez, and J. Carretero, “Using
black-box modeling techniques for modern disk drives service time
simulation,” in Simulation Symposium, 2008. ANSS 2008. 41st Annual,
April 2008, pp. 139–145.

[33] A. Crume, C. Maltzahn, L. Ward, T. Kroeger, M. Curry, and R. Oldfield,
“Fourier-assisted machine learning of hard disk drive access time
models,” in Proceedings of the 8th Parallel Data Storage Workshop.
ACM, 2013, pp. 45–51.

[34] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”
Computer, vol. 27, no. 3, pp. 17–28, 1994. [Online]. Available:
http://dx.doi.org/10.1109/2.268881

[35] J. Axboe, “FIO Git repository.” [Online]. Available: http://git.kernel.dk/
?p=fio.git

[36] R. Haskin, “The Shark continuous-media file server,” in Compcon Spring
’93, Digest of Papers., Feb. 1993, pp. 12–15.

[37] Inktank Storage Inc., “Ceph documentation: Choosing the
number of placement groups,” retrieved Feb 2016. [On-
line]. Available: http://docs.ceph.com/docs/master/rados/operations/
placement-groups/#choosing-the-number-of-placement-groups

[38] M. Krzywinski, J. Schein, İ. Birol, J. Connors, R. Gascoyne,
D. Horsman, S. J. Jones, and M. A. Marra, “Circos: An information
aesthetic for comparative genomics,” Genome Research, vol. 19, no. 9,
pp. 1639–1645, 2009. [Online]. Available: http://genome.cshlp.org/
content/19/9/1639.abstract

[39] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A
parallel file system for Linux clusters,” in Proceedings of the 4th annual
Linux Showcase & Conference-Volume 4. USENIX Association, 2000,
p. 28.

[40] A. Cidon, S. M. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum, “Copysets: Reducing the frequency of data loss in
cloud storage,” in Proceedings of the 2013 USENIX Conference on
Annual Technical Conference, ser. USENIX ATC’13. Berkeley, CA,
USA: USENIX Association, 2013, pp. 37–48. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2535461.2535467

[41] J. Wozniak, S. W. Son, and R. Ross, “Distributed object storage rebuild
analysis via simulation with GOBS,” in 2010 International Conference
on Dependable Systems and Networks Workshops (DSN-W), June 2010,
pp. 23–28.

[42] S. Snyder, P. Carns, R. Latham, M. Mubarak, R. Ross, C. Carothers,
B. Behzad, H. V. T. Luu, S. Byna, and Prabhat, “Techniques for
modeling large-scale HPC I/O workloads,” in Proceedings of the 6th
International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS15), 2015.

[43] X. Luo, F. Mueller, P. Carns, J. Jenkins, R. Latham, R. Ross, and
S. Snyder, “HPC I/O trace extrapolation,” in Workshop on Extreme-Scale
Programming Tools (ESPT 2015), 2015.

[44] S. Snyder, P. Carns, J. Jenkins, K. Harms, R. Ross, M. Mubarak, and
C. Carothers, “A case for epidemic fault detection and group membership
in HPC storage systems,” in Proceedings of the 5th International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS14). Springer, 2014.

[45] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Modeling a
million-node dragonfly network using massively parallel discrete-event
simulation,” in 3rd International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing Systems
(PMBS12), 2012.

[46] ——, “A case study in using massively parallel simulation for extreme-
scale torus network codesign,” in Proceedings of the 2nd ACM
SIGSIM/PADS conference on Principles of advanced discrete simulation.
ACM, 2014, pp. 27–38.

http://doi.acm.org/10.1145/1188455.1188582
http://doi.acm.org/10.1145/2185376.2185383
http://doi.acm.org/10.1145/383059.383071
http://www.commoncrawl.org/
https://aws.amazon.com/public-data-sets/
http://dx.doi.org/10.1109/MSST.2010.5496972
http://www.er.doe.gov/ascr/incite/
http://doi.acm.org/10.1145/945445.945450
http://doi.acm.org/10.1145/2486092.2486134
http://doi.acm.org/10.1145/215399.215427
http://doi.acm.org/10.1145/215399.215427
http://doi.acm.org/10.1145/3916.3988
http://dx.doi.org/10.1109/2.268881
http://git.kernel.dk/?p=fio.git
http://git.kernel.dk/?p=fio.git
http://docs.ceph.com/docs/master/rados/operations/placement-groups/#choosing-the-number-of-placement-groups
http://docs.ceph.com/docs/master/rados/operations/placement-groups/#choosing-the-number-of-placement-groups
http://genome.cshlp.org/content/19/9/1639.abstract
http://genome.cshlp.org/content/19/9/1639.abstract
http://dl.acm.org/citation.cfm?id=2535461.2535467

	Introduction
	Background
	Object placement
	Data populations
	Rebuild protocols

	Simulation methodology
	Network model validation
	Disk model validation
	Pipelining protocol

	CRUSH case study
	Hierarchical CRUSH maps

	Improving rebuild performance
	Strategy: eliminating placement groups
	Strategy: employing consistent hashes as bucket algorithms
	Impact of data population
	Assessment of PDES methodology

	Related work
	Conclusions and future work
	References

